Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Int J Mol Sci ; 23(4)2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1715393

ABSTRACT

Cardiovascular diseases (CVDs) are the leading cause of human mortality worldwide. Oxidative stress and inflammation are pathophysiological processes involved in the development of CVD. That is why bioactive food ingredients, including lycopene, are so important in their prevention, which seems to be a compound increasingly promoted in the diet of people with cardiovascular problems. Lycopene present in tomatoes and tomato products is responsible not only for their red color but also for health-promoting properties. It is characterized by a high antioxidant potential, the highest among carotenoid pigments. Mainly for this reason, epidemiological studies show a number of favorable properties between the consumption of lycopene in the diet and a reduced risk of cardiovascular disease. While there is also some controversy in research into its protective effects on the cardiovascular system, growing evidence supports its beneficial role for the heart, endothelium, blood vessels, and health. The mechanisms of action of lycopene are now being discovered and may explain some of the contradictions observed in the literature. This review aims to present the current knowledge in recent years on the preventive role of lycopene cardiovascular disorders.


Subject(s)
Cardiovascular Diseases/prevention & control , Lycopene/pharmacology , Animals , Antioxidants/pharmacology , Heart/drug effects , Humans , Solanum lycopersicum/chemistry , Oxidative Stress/drug effects
2.
Eur J Pharmacol ; 915: 174670, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1549763

ABSTRACT

Hydroxychloroquine (HCQ) is a derivative of the antimalaria drug chloroquine primarily prescribed for autoimmune diseases. Recent attempts to repurpose HCQ in the treatment of corona virus disease 2019 has raised concerns because of its propensity to prolong the QT-segment on the electrocardiogram, an effect associated with increased pro-arrhythmic risk. Since chirality can affect drug pharmacological properties, we have evaluated the functional effects of the R(-) and S(+) enantiomers of HCQ on six ion channels contributing to the cardiac action potential and on electrophysiological parameters of isolated Purkinje fibers. We found that R(-)HCQ and S(+)HCQ block human Kir2.1 and hERG potassium channels in the 1 µM-100 µM range with a 2-4 fold enantiomeric separation. NaV1.5 sodium currents and CaV1.2 calcium currents, as well as KV4.3 and KV7.1 potassium currents remained unaffected at up to 90 µM. In rabbit Purkinje fibers, R(-)HCQ prominently depolarized the membrane resting potential, inducing autogenic activity at 10 µM and 30 µM, while S(+)HCQ primarily increased the action potential duration, inducing occasional early afterdepolarization at these concentrations. These data suggest that both enantiomers of HCQ can alter cardiac tissue electrophysiology at concentrations above their plasmatic levels at therapeutic doses, and that chirality does not substantially influence their arrhythmogenic potential in vitro.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Heart/drug effects , Hydroxychloroquine/chemistry , Hydroxychloroquine/pharmacology , Ion Channels/drug effects , Action Potentials/drug effects , Animals , Arrhythmias, Cardiac/chemically induced , Electrocardiography , Electrophysiologic Techniques, Cardiac , Ether-A-Go-Go Potassium Channels , Humans , Membrane Potentials/drug effects , Patch-Clamp Techniques , Purkinje Fibers/drug effects , Rabbits , Stereoisomerism
4.
Cardiovasc Toxicol ; 21(10): 781-789, 2021 10.
Article in English | MEDLINE | ID: covidwho-1306730

ABSTRACT

Since the onset of the global COVID-19 pandemic, there has been much discussion about the advantages and disadvantages of ongoing chronic drug therapies in SARS-CoV-2-positive patients. These discussions include also statins treatment. The statins are among the most widely used drugs in the global population. Statins aim to lower cholesterol, which is essential for many biological processes but can lead to heart disease if levels are too high; however, also the pleiotropic effects of statins are well known. So could the anti-inflammatory or the potential antiviral effects of statins be helpful in avoiding extreme inflammation and severity in COVID-19? To date, there are conflicting opinions on the effects of statins in the course of COVID-19 infection. The aim of this article is to describe the molecular and pharmacological basis of the pleiotropic effects of statins that could be more involved in the fight against COVID-19 infection and to investigate the current epidemiological evidence in the literature on the current and important topic.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Heart Diseases/drug therapy , Heart/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , SARS-CoV-2/drug effects , Animals , Anti-Inflammatory Agents/adverse effects , Antiviral Agents/adverse effects , COVID-19/epidemiology , COVID-19/physiopathology , COVID-19/virology , Heart/physiopathology , Heart/virology , Heart Diseases/epidemiology , Heart Diseases/physiopathology , Heart Diseases/virology , Host-Pathogen Interactions , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , SARS-CoV-2/pathogenicity , Treatment Outcome
5.
Pharmacol Res ; 168: 105581, 2021 06.
Article in English | MEDLINE | ID: covidwho-1157664

ABSTRACT

In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role of the deregulation of the heart-brain axis (HBA), a bidirectional flow of information, in leading to severe multiorgan disease syndrome (MODS) in patients with confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Noteworthy, HBA dysfunction may worsen the outcome of the COVID-19 patients. In this review, we discuss the critical role HBA plays in both promoting and limiting MODS in COVID-19. We also highlight the role of HBA as new target for novel therapeutic strategies in COVID-19 in order to open new translational frontiers of care. This is a translational perspective from the Italian Society of Cardiovascular Researches.


Subject(s)
Brain Diseases/therapy , Brain/drug effects , COVID-19/therapy , Heart Diseases/therapy , Heart/drug effects , Adrenal Cortex Hormones/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Antiviral Agents/administration & dosage , Brain/immunology , Brain/metabolism , Brain Diseases/immunology , Brain Diseases/metabolism , COVID-19/immunology , COVID-19/metabolism , Critical Care/methods , Critical Illness/therapy , Dietary Supplements , Functional Food , Heart Diseases/immunology , Heart Diseases/metabolism , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Microvessels/drug effects , Microvessels/immunology , Microvessels/metabolism , Multiple Organ Failure/immunology , Multiple Organ Failure/metabolism , Multiple Organ Failure/therapy , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/metabolism
6.
Mol Cell Biochem ; 476(4): 1891-1895, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1044487

ABSTRACT

Corona virus disease-19 (covid-19) is caused by a coronavirus that is also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and is generally characterized by fever, respiratory inflammation, and multi-organ failure in susceptible hosts. One of the first things during inflammation is the response by acute phase proteins coupled with coagulation. The angiotensinogen (a substrate for hypertension) is one such acute phase protein and goes on to explain an association of covid-19 with that of angiotensin-converting enzyme-2 (ACE2, a metallopeptidase). Therefore, it is advisable to administer, and test the efficacy of specific blocker(s) of angiotensinogen such as siRNAs or antibodies to covid-19 subjects. Covid-19 activates neutrophils, macrophages, but decreases T-helper cells activity. The metalloproteinases promote the activation of these inflammatory immune cells, therefore; we surmise that doxycycline (a metalloproteinase inhibitor, and a safer antibiotic) would benefit the covid-19 subjects. Along these lines, an anti-acid has also been suggested for mitigation of the covid-19 complications. Interestingly, there are three primary vegetables (celery, carrot, and long-squash) which are alkaline in their pH-range as compared to many others. Hence, treatment with fresh juice (without any preservative) from these vegies or the antioxidants derived from purple carrot and cabbage together with appropriate anti-coagulants may also help prevent or lessen the detrimental effects of the covid-19 pathological outcomes. These suggested remedies might be included in the list of putative interventions that are currently being investigated towards mitigating the multi-organ damage by Covid-19 during the ongoing pandemic.


Subject(s)
COVID-19 Drug Treatment , Heart Failure/drug therapy , Inflammation/drug therapy , RNA, Small Interfering/therapeutic use , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensinogen/antagonists & inhibitors , Angiotensinogen/genetics , COVID-19/genetics , COVID-19/physiopathology , COVID-19/virology , Heart/drug effects , Heart/physiopathology , Heart/virology , Heart Failure/complications , Heart Failure/physiopathology , Heart Failure/virology , Humans , Inflammation/complications , Inflammation/genetics , Inflammation/virology , Neutrophils/virology , Pandemics , SARS-CoV-2/pathogenicity
7.
Sci Rep ; 10(1): 19199, 2020 11 05.
Article in English | MEDLINE | ID: covidwho-912911

ABSTRACT

Chloroquine (CQ) and hydroxychloroquine (HCQ) are on the World Health Organization's List of Essential Medications for treating non-resistant malaria, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). In addition, both drugs are currently used off-label in hospitals worldwide and in numerous clinical trials for the treatment of SARS-CoV-2 infection. However, CQ and HCQ use has been associated with cardiac side effects, which is of concern due to the higher risk of COVID-19 complications in patients with heart related disorders, and increased mortality associated with COVID-19 cardiac complications. In this study we analyzed over thirteen million adverse event reports form the United States Food and Drug Administration Adverse Event Reporting System to confirm and quantify the association of cardiac side effects of CQ and HCQ. Additionally, we identified several confounding factors, including male sex, NSAID coadministration, advanced age, and prior diagnoses contributing to drug related cardiotoxicity. These findings may help guide therapeutic decision making and ethical trial design for COVID-19 treatment.


Subject(s)
Chloroquine/adverse effects , Heart/drug effects , Hydroxychloroquine/adverse effects , Product Surveillance, Postmarketing , Safety , COVID-19 , Chloroquine/therapeutic use , Cohort Studies , Coronavirus Infections/drug therapy , Female , Humans , Hydroxychloroquine/therapeutic use , Male , Middle Aged , Pandemics , Pneumonia, Viral/drug therapy
8.
Food Chem Toxicol ; 145: 111694, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-888510

ABSTRACT

We investigated the effects of tocilizumab on endothelial glycocalyx, a determinant of vascular permeability, and myocardial function in rheumatoid arthritis (RA). Eighty RA patients were randomized to tocilizumab (n = 40) or conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) and glucocorticoids (GC) (n = 40) for 3 months. Forty healthy subjects with similar age and sex served as controls. We measured: (a)perfused boundary region (PBR) of the sublingual arterial microvessels (increased PBR indicates reduced glycocalyx thickness), (b)pulse wave velocity (PWV), (c)global LV longitudinal strain (GLS), (d)global work index (GWI) using speckle tracking echocardiography and e)C-reactive protein (CRP), malondialdehyde (MDA) and protein carbonyls (PCs) as oxidative stress markers at baseline and post-treatment. Compared to controls, RA patients had impaired glycocalyx and myocardial deformation markers (P < 0.05). Compared with baseline, tocilizumab reduced PBR(2.14 ± 0.2 versus 1.97 ± 0.2 µm; P < 0.05) while no significant differences were observed post-csDMARDs + GC(P > 0.05). Compared with csDMARDs + GC, tocilizumab achieved a greater increase of GLS, GWI and reduction of MDA, PCs and CRP(P < 0.05). The percent improvement of glycocalyx thickness (PBR) was associated with the percent decrease of PWV, MDA, PCs and the percent improvement of GLS and GWI(P < 0.05). Tocilizumab improves endothelial function leading to a greater increase of effective myocardial work than csDMARDs + GC through a profound reduction of inflammatory burden and oxidative stress. This mechanism may explain the effects of tocilizumab on COVID-19. CLINICAL TRIAL REGISTRATION: url: https://www.clinicaltrials.gov. Unique identifier: NCT03288584.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Arthritis, Rheumatoid/drug therapy , Endothelium/drug effects , Glycocalyx/drug effects , Oxidative Stress/drug effects , Aged , Betacoronavirus , COVID-19 , Capillary Permeability/drug effects , Coronavirus Infections/drug therapy , Female , Heart/drug effects , Humans , Inflammation/drug therapy , Interleukin-6/antagonists & inhibitors , Male , Middle Aged , Pandemics , Pneumonia, Viral/drug therapy , Pulse Wave Analysis , SARS-CoV-2
9.
Med Hypotheses ; 144: 110198, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-716874

ABSTRACT

Chloroquine (CQ) and hydroxychloroquine (HCQ) were among the first drugs repurposed for the treatment of SARS-CoV-2 infection. A few in vitro studies confirmed that both drugs exhibited dose dependent anti-SARS-CoV-2 activities. These observations and the encouraging results from early poorly conducted observational studies created a major hype about the therapeutic potential of these drugs in the treatment of COVID-19 disease. This was further catalyzed by media and political influences leading to a widespread use of these agents. Subsequent randomized trials revealed lack of efficacy of these agents in improving the outcomes of COVID-19 or in preventing infection in post-exposure prophylaxis studies. Nevertheless, many ongoing trials continue to actively recruit tens of thousands of patients to receive HCQ worldwide. In this perspective, we address the possible mechanisms behind the lack of efficacy and the increased risk of cardiac toxicity of HCQ in COVID-19 disease. For the lack of efficacy, we discuss the fundamental differences of treatment initiation between in vitro and in vivo studies, the pitfalls of the pharmacological calculations of effective blood drug concentrations and related dosing regimens, and the possible negative effect of HCQ on the antiviral type-I interferon response. Although it has been repeatedly claimed that HCQ has a longstanding safety track record for many decades in use, we present counterarguments for this contention due to disease-drug and drug-drug interactions. We discuss the molecular mechanisms and the cumulative epidemiological evidence of HCQ cardiac toxicity.


Subject(s)
COVID-19 Drug Treatment , Hydroxychloroquine/adverse effects , Hydroxychloroquine/therapeutic use , Animals , Antiviral Agents , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/mortality , Azithromycin/pharmacology , Bradycardia/chemically induced , Bradycardia/mortality , Death, Sudden, Cardiac , Drug Interactions , Heart/drug effects , Heart Failure/chemically induced , Heart Failure/mortality , Humans , Interferon Type I/metabolism , Mice , Observational Studies as Topic , Randomized Controlled Trials as Topic , Risk , SARS-CoV-2
11.
Heart Rhythm ; 17(9): 1445-1451, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-436694

ABSTRACT

BACKGROUND: Early during the current coronavirus disease 19 (COVID-19) pandemic, hydroxychloroquine (HCQ) received a significant amount of attention as a potential antiviral treatment, such that it became one of the most commonly prescribed medications for COVID-19 patients. However, not only has the effectiveness of HCQ remained questionable, but mainly based on preclinical and a few small clinical studies, HCQ is known to be potentially arrhythmogenic, especially as a result of QT prolongation. OBJECTIVE: The purpose of this study was to investigate the arrhythmic effects of HCQ, as the heightened risk is especially relevant to COVID-19 patients, who are at higher risk for cardiac complications and arrhythmias at baseline. METHODS: An optical mapping technique utilizing voltage-sensitive fluorescent dyes was used to determine the arrhythmic effects of HCQ in ex vivo guinea pig and rabbit hearts perfused with the upper therapeutic serum dose of HCQ (1000 ng/mL). RESULTS: HCQ markedly increased action potential dispersion, resulted in development of repolarization alternans, and initiated polymorphic ventricular tachycardia. CONCLUSION: The study results further highlight the proarrhythmic effects of HCQ.


Subject(s)
Antimalarials/pharmacology , Heart Rate/drug effects , Heart/drug effects , Heart/physiopathology , Hydroxychloroquine/pharmacology , Animals , Cardiac Pacing, Artificial , Coronavirus Infections/drug therapy , Guinea Pigs , Heart/diagnostic imaging , Rabbits , Tissue Culture Techniques , Voltage-Sensitive Dye Imaging , COVID-19 Drug Treatment
12.
FASEB J ; 34(5): 6027-6037, 2020 05.
Article in English | MEDLINE | ID: covidwho-143943

ABSTRACT

There are currently no proven or approved treatments for coronavirus disease 2019 (COVID-19). Early anecdotal reports and limited in vitro data led to the significant uptake of hydroxychloroquine (HCQ), and to lesser extent chloroquine (CQ), for many patients with this disease. As an increasing number of patients with COVID-19 are treated with these agents and more evidence accumulates, there continues to be no high-quality clinical data showing a clear benefit of these agents for this disease. Moreover, these agents have the potential to cause harm, including a broad range of adverse events including serious cardiac side effects when combined with other agents. In addition, the known and potent immunomodulatory effects of these agents which support their use in the treatment of auto-immune conditions, and provided a component in the original rationale for their use in patients with COVID-19, may, in fact, undermine their utility in the context of the treatment of this respiratory viral infection. Specifically, the impact of HCQ on cytokine production and suppression of antigen presentation may have immunologic consequences that hamper innate and adaptive antiviral immune responses for patients with COVID-19. Similarly, the reported in vitro inhibition of viral proliferation is largely derived from the blockade of viral fusion that initiates infection rather than the direct inhibition of viral replication as seen with nucleoside/tide analogs in other viral infections. Given these facts and the growing uncertainty about these agents for the treatment of COVID-19, it is clear that at the very least thoughtful planning and data collection from randomized clinical trials are needed to understand what if any role these agents may have in this disease. In this article, we review the datasets that support or detract from the use of these agents for the treatment of COVID-19 and render a data informed opinion that they should only be used with caution and in the context of carefully thought out clinical trials, or on a case-by-case basis after rigorous consideration of the risks and benefits of this therapeutic approach.


Subject(s)
Coronavirus Infections/drug therapy , Hydroxychloroquine/adverse effects , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , COVID-19 , Datasets as Topic/standards , Heart/drug effects , Humans , Hydroxychloroquine/pharmacology , Immunity, Innate/drug effects , Pandemics , Randomized Controlled Trials as Topic/standards
SELECTION OF CITATIONS
SEARCH DETAIL